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Abstract: The human brain can be understood as a vast network of neurons connected via synapses,
the state of which is characterized by ion concentrations, phosphorylation patterns, receptor
densities, etc. It is plausible that a mechanistic simulation at the scale of the whole brain (a “whole-
brain emulation” or WBE) will be made, raising questions about moral status and personal agency.
Creating a dynamical model of the brain presents a complex tradeoff between better performance,
and data collection and operating costs. To make informed scientific, engineering, as well as
personal decisions on the tradeoffs involved, a set of tests should be defined that quantify not only
the dynamics of the underlying spiking neural network model, but also the performance of the
emulated individual on a comprehensive repertoire of skills in a variety of domains. “Fidelity” can
then be defined as a measure of how well the behavior of the model corresponds with the behavior
of the original individual, or with respect to stereotyped brains. Models can subsequently be
optimized to obtain the highest fidelity within the constraints of a given cost budget. However, an
overall measure of fidelity is the outcome of a complex, high-dimensional optimization problem
(that of choosing the parameters for a WBE) and remains in and of itself (as a measure or index)
challenging to define. Different people and organizations are expected to make different tradeoffs
based on a diverse set of criteria. Consequently, there can be multiple variants on offer for the
translation from an original, biological brain to a WBE. If some variants are deemed cognitively
superior, but are available only at a high cost, then this could have undesired socioeconomic effects
where only those who are wealthy can afford the higher-tier emulations. However, competition
between different WBE platform operators, which attempt to achieve the highest fidelity at the
lowest cost, could help drive overall costs down. A framework of legal and ethical standards
pertaining to model fidelity should be defined, which should recommend a minimum set of
standardized tests.

Keywords: brain model; verification and validation; computational neuroscience, whole-brain
emulation (WBE); substrate-independent mind (SIM); mind uploading

1. Introduction

The human brain is a physical object, the state of which varies over time. It can be
measured, modeled by theory, and formulated mathematically as a dynamical system,
allowing a computer to simulate its activity. As always in modeling, the model is a
simplification of reality, typically involving certain approximations and assumptions.
Modeling the brain is a difficult, multiscale challenge: there is an astronomically large
number of neurons and synapses in the brain, and the spatial scales involved range from
molecular interactions to electric fields at the scale of the whole brain, while timescales
range from sub-millisecond processes, to learning that takes place over days to years.
There is, however, no fundamental reason why a computer simulation of an individual
human brain could not be built, that integrates so much of the biophysical details, that it
would behave indistinguishably from the biological original. On a biophysical level, it
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would replicate the input-output behavior of single cells; by connecting these cells in a
vast network on the basis of microscopy data, the activity of the network would verifiably
(in a scientifically sound and falsifiable way) match that of the biological brain. When this
biophysical simulation runs, the simulated brain would experience sensations, and exhibit
cognition, self-awareness, a sense of identity, and agency via simulated or robotically
mediated interactions with an environment through a certain embodiment (“avatar”).
Potentially, this simulated individual would have a claim to human rights, and in general,
would be a person just like you or I —except that instead of a biological brain, their brain
function would depend on the electronic substrate of a computer. Analogous to a
prosthesis, which can take over the function of a biological limb or an organ, a computer
program becomes a neuroprosthetic of the original, biological brain. The brain data is
obtained from a particular, individual human brain, so it is implied that the identity of
that individual person is preserved by means of the computational neuroprosthetic.
Furthermore, the person would experience a continuity of existence (such as by retaining
their unique memories) from the time leading up to the scan to the point where the
resulting WBE is operating (Sandberg and Bostrom 2008).

The term “simulation” refers to mimicking the evolution through time of some
measurable quantity of the physical system (the brain) on a computer. Instead of a
potentially superficial facsimile that only reproduces a select number of outwardly
measurable quantities, an emulation is a simulation that is based on mimicking the internal
mechanisms of the process (Sandberg and Bostrom 2008). In the case of a brain emulation,
this means going beyond a statistics-based model (Rothblatt 2013) by replicating aspects
of the structure and function of a brain, such as the architecture of a network of spiking
neurons, that allow system identification and reconstruction even for system behaviors
not seen in a limited dataset. A mechanistic model on the scale of the entire human brain
is referred to as a “whole-brain emulation” (WBE; Koene 2012).

The most foreseeable path to WBE involves high-resolution microscopy of brain
tissue, followed by computer-aided segmentation of the scans and reconstruction into a
three-dimensional volume (Xu et al. 2020; Dorkenwald et al. 2023; Collins et al. 2025). The
features typically observed in these scans are at the scale of single cells and synapses:
individual neurons and their ramifications can be readily distinguished. To further
develop the resulting anatomical model into a dynamical model that can be simulated on
a computer, functional properties of the cells have to be known, perhaps derived from
known structure-function relationships (Allen 2022) or additional types of scans, such as
immunohistochemistry (Fulton and Briggman 2021). Parameter fitting and optimization
may need to be carried out to allow the digital network model to perform computational
tasks (Lappalainen et al. 2024) and do so in a way emulating the biophysical mechanisms
of the real brain (Shiu et al. 2024). The overall process of scanning and digitisation of a
brain, and elaborating it into a dynamical model that is then simulated on a computer, is
popularly known as “uploading”.

We note that there are rich, ongoing debates in the literature regarding the feasibility
of WBE (see for instance Chalmers 2014), in particular regarding the technical feasibility
and questions of consciousness and preservation of personal identity (Minerva 2021). It is
outside the scope of this paper to address and provide counterarguments for these
critiques; for the purposes of this paper, the theoretical and practical feasibility, and the
eventual realization of WBE, will be postulated to be an accepted truth (an axiom), in the
interest of serving as the basis for further reasoning and discussion.

2. Tradeoffs in design decisions

Computational models must be formulated using a precise syntax and semantics and
in a way amenable to computer simulation. First, a sensible set of features has to be
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selected to represent the system. The rules of evolution in time of these features have to
be established, and the values of system parameters need to be derived from
measurements or be otherwise inferred. Then, the model (features and rules of evolution)
must be implemented in a form that can be run on a computer. In each of these steps, there
is a complexity tradeoff: incorporating more parameters and state variables into the model
might improve its accuracy and predictive value, but requires more data to be gathered
in order to assign numerical values to parameters and to elucidate interrelationships
between state variables. The time taken to achieve a good model fit to the empirical data,
a constrained optimization problem, increases drastically with the number of interacting
variables (a combinatorial explosion). Storage requirements increase with the number of
variables and parameters of the model. When running the emulation, the state update
dynamics of the model can be computed with greater numerical precision, but at the cost
of requiring additional computational power or wall-clock time.

Although in the long-term future, the cost of computation may tend towards zero
(Bostrom 2003), and similar arguments can be made for the mass, volume and energy
requirements of the computational substrate, the tradeoff argument will continue to apply
as long as there is at least some non-zero cost to computation (as well as the requisite
storage, communication of data across a network, etc.) This will certainly remain the case
in the foreseeable future, especially until the point where novel computational paradigms
such as reversible and quantum computing could be adopted, although their usability for
brain simulations has yet to be demonstrated. Even in a distant future, a constant striving
for improvement, and contention over finite resources could be sufficient to drive an
evolutionary process that involves resource/performance tradeoffs (see discussion about
the “Red Queen hypothesis” in the Discussion section).

Thus, in practice, a complex tradeoff must be made involving many options and
possibilities. We illustrate this complexity by providing several concrete examples of
tradeoffs related to model construction and model simulation, respectively, in the
following two subsections.

2.1. Design decisions related to model construction

Computational models are representations of real physical systems, with which
quantitative, testable predictions about those systems can be made (Horsman et al. 2014).
Models are constructed based on a set of criteria that suit the context of the application or
purpose of the model, such as phenomena or behaviors the model aims to predict. The
model may or may not make useful predictions beyond that context, but it is not
guaranteed by its construction; a model is an idealization and is intended to operate well
within a given application range.

A real-world system that is being modeled thus does not have a prescribed unique
or inherent scale, formulation, or level of description (as already observed in Rosenblueth
and Wiener 1945). However, the emulations of interest to us should include explicit
representations of underlying mechanisms and their interactions, through a system
architecture that corresponds with the real-world system. They should not reproduce only
externally observable behavior, but operate on the basis of similar principles and laws of
physics, that describe how the state of the system changes across time. For instance, a
weather prediction model could be based on a simple statistical model of temperature and
precipitation on previous days, or it could involve a detailed simulation of atmospheric
currents, although both might make similar predictions. If a model has a mechanistic
basis, then it allows us to speak about a level of detail: more aspects or components of the
system’s mechanism can be incorporated into the model to provide a greater level of
detail. These components are compatible and mutually interact by virtue of being
analogues of their real-world counterparts. Mechanistic models with a higher level of
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detail would be expected to have greater predictive value (in this example, to be better
predictors of the upcoming weather) and to generalize better to situations that they were
not explicitly trained or adjusted for.

Dynamical models of the brain can also be defined at various levels of detail; the 2008
Roadmap to Whole-Brain Emulation considered eleven resolutions (Sandberg and
Bostrom 2008), including tracking individual molecules, such as neurotransmitters at the
highest resolution, and treating an entire population of neurons as a single partial
differential equation at the lowest resolution.! Several ways in which model resolution
may affect the emulation are suggested by existing insights into brain physiology, current
practices of modeling and simulating, and known links with function and behavior. We
will review several concrete examples of such insights in the next paragraphs, before
coming to a general conclusion.

A first example comes from the volumetric reconstruction of all neurons and
synapses in a Drosophila larva brain, where manual proofreading suggests errors of
omission in the reconstruction of synaptic connectivity (Winding et al. 2023). In general,
false positives and false negatives may be rare in proportion to the volume imaged, but
depending on their distribution and on the robustness of information representation in
neural networks, such errors may be cumulatively significant. As synaptic connectivity is
posited to be the physical mechanism for the retention of memories (Frankland et al. 2019),
errors of omission are a concrete example where specific details of a data analysis step
have direct impact on an individual’s personal identity, as it could erase or distort existing
memories, presenting as retrograde amnesia. This implies that there is a tradeoff to be
made: how much compute time and other resources do we dedicate to the 3D
reconstruction algorithm, especially when running the algorithm for longer and longer
times runs into diminishing gains in reconstruction accuracy?

In the compartmental modeling method, which is highly successful in predicting
biological firing activity (Herz et al. 2006), realistically modeling biological features of real
neurons is the principal aim. Typically, compartmental neuron models are based on
reconstructions from (electron) microscopic scans of individual cells, and automatically
processed into thousands of discrete compartments (Bates et al. 2020). However, large
numbers of compartments means increased computational cost. The models can typically
be simplified to contain fewer compartments, while retaining -electrical-circuit
characteristics and functional responses to inputs (Wybo et al. 2021; Amsalem et al. 2020).
The simplification process is gradual, with error measures (compared to the baseline
model with the largest number of compartments) gradually increasing with decreasing
compartment count. There are no well-established rules for what compartment count is
adequate, but the count is defined depending on other factors such as the conditions
under which the simplification strategy is evaluated (for instance, response to input spike
patterns of varying complexity).

Brain function relies on highly dynamic, activity-dependent processes that switch
genes on and off. These can lead to profound structural and functional changes, involving
the formation of new, and elimination of unused synapses, changes in cytoskeleton,
receptor mobility as well as energy metabolism. Cognitive ability may crucially depend
on how efficiently neurons can regulate these processes (Goriounova and Mansvelder
2019). It was found that a genetic overall factor explained, on average, over 58% of the
variance across seven cognitive tests in people with European ancestry. Genome-wide
association studies (GWASes) were conducted on intelligence test scores to identify

1 Let us assume that at a given level of description, the constituent components can be described by on the order of 10-1000 state
variables; it does not make sense to talk about a cell-level model that contains so many state variables that it becomes essentially
equivalent to a more detailed (for example, proteome-level) description.
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associated genetic loci. Using large sample sizes, of over 200,000 participants, hundreds
of genetic loci significantly associated with intelligence were found, each of which
accounts for a tiny proportion of overall intelligence (Deary et al. 2021). For some of these
genes, the mechanisms by which they influence cognition are known. For example, a
common functional polymorphism in the COMT gene has been associated with
improvements in working memory performance. Catechol-O-Methyltransferase, the
protein coded for by the gene, breaks down dopamine in the prefrontal cortex, whereas
increased dopamine availability is associated with better memory performance. Similar
polymorphisms exist for other genes that are known to encode for proteins involved in
cellular maintenance and repair, such as Apolipoprotein E (APOE; Dongés et al. 2012).
These findings match what is known from research into the consolidation of memories,
which indeed suggests a complex process between storage and retrieval, relying on the
efficacy of protein synthesis and turnover, suggesting involvement of an intricate
intracellular signaling network (Nader et al. 2000).

In general, intracellular pathways of second messengers and downstream effects
(Sorokina et al. 2021), phosphorylation of various proteins, dendritic spikes, cellular
morphology and microdomains, the stochastic properties of ion channels (Cannon et al.
2010), DNA translation and epigenetic regulation, glia, the dozens of known
neurotransmitters and neuromodulators (Sandberg and Bostrom 2008), retrograde
signaling (Citri and Malenka 2008), and so on, constitute a vast swath of intra- and
extracellular mechanisms that are implicated in the computational function of neurons
and synaptic plasticity. An emulation that incorporates a higher level of detail and
increasing number of these mechanisms would demonstrably increase the similarity to
the biological original, and have greater explanatory and predictive value as a model, but
requires additional computational resources. Some biophysical processes, such as those
related to cell metabolism, or the regulation of local oxygenated blood flow in the
neuropil, could have effects that are very hard to detect on a functional (behavioral) level
without specific testing, or not deemed sufficiently relevant to neural computation on the
basis of theoretical considerations (or may even be undesirable, such as finite blood
oxygenation).

2.2. Design decisions related to model simulation

The outcome of the design process in paragraph 2.1 is a formal description of a set of
interacting mechanisms, that is, a model containing state variables, parameters, and a set
of rules that describe how the state of the system changes across time. Simulation software
takes the model description as input, and computes the numerical outcomes of these rules,
advancing the state of the simulation in (simulated) time, while also providing interfaces
for reading out the state of the system and providing external stimuli, for example in a
closed loop physics simulation of a simulated or real-world body avatar. Numerical
accuracy of the simulation methods can have a large impact on network dynamics, and
by extension, how (well) the network functions.

Many physical models of dynamical processes are formulated in terms of a set of
ordinary differential equations (ODEs), which describe how quantities in the model
change over time. Simulating these dynamical systems on a digital computer requires the
discretization of time into discrete steps, and taking jumps from one step to the next; the
state of the system is typically only well defined before and after each jump (Koene 2012).
The size of the timestep At (or in other words, the temporal resolution of the simulation)
is a free parameter chosen by the modeler and is often purely based on heuristics, or
possibly, based on a maximum error bound that is itself heuristically chosen. A smaller
timestep (up to a certain point) generally results in better accuracy, that is, a better
approximation of the continuous-time ODEs by their discrete approximations, but as
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halving the timestep typically doubles the amount of computation required, At is a
centrally important quantity to be chosen optimally.

On a computer, the variables describing the system have to be represented in a finite
bit resolution. On modern computers, a default of 64 bit floating-point resolution (IEEE
2019) provides 11 bits for the exponent and 52 bits for the mantissa. Some models use
only 8 bits of resolution (Miiller and Indiveri 2015) or even fewer (down to 1 bit). Because
of the very large number of synapses in the model, small savings in storage and
computation per synapse translate into considerable gains on the network level, in terms
of hardware requirements, processing efficiency and power consumption (Pfeil et al. 2012;
Bartol et al. 2015). Novel analog neuromorphic hardware could impose similar
constraints. Although the discussion on bit resolution and timesteps applies to digital and
not analog computers, the latter have their own fundamental limits on representational
accuracy in terms of electrical noise, component variability, unintentional non-linearities
and parasitic effects such as electrical coupling between adjacent components (Petrovici
et al. 2014).

Taken together, the degree to which the output of a simulation approximates the true
solutions to the mathematical model upon which it is based, as well as the degree to which
the mathematically ideal model approximates the real, biological system upon which it is
based, are the outcome of a high-dimensional set of mutually interacting design decisions,
many of which have a graded (as opposed to all-or-nothing) nature. It is not clear a priori
which values are adequate for the model; for example, whether increasing the number of
bits representing floating point numbers, or doubling the number of compartments in a
model, should be considered to give equal contributions to improved model function,
given the extra computational burden that is implied. Although effects can be subtle
individually, even small effects could have large interactions when combined, as seen in
the genetic studies. Some individuals may consider even subtle effects to be worth the
investment —although there might be mainstream consensus, it would also be conceivable
to operate under a different set of (personal) norms, in the same way that people have
different standards about their diet and supplement intake.

3. Functional tests guide design decisions

In section 2, we argued that a complex, multidimensional set of tradeoffs exists in
all stages of constructing a WBE, from the data gathering, to model construction and
simulation methods. Due to the high dimensionality and complexity of this optimization
problem (that is, to choose the optimal model and simulation parameters in the space of
all possible design decisions), there could be many viable choices, and it is not clear
which level of detail, or which variables (and which dynamics) are required in the WBE
model. We now address how informed decisions can be made on these tradeoffs.

In general, models are created in the context of a set of target phenomena that the
model is set out to capture; thus, the targets that are defined should be taken into careful
consideration and can be a source of divergent design decisions during data collection
and model construction. Having a set of targets implies that the degree to which the
targets have been met by the model needs to be quantified. This raises the question of
which tests will be used, and to what degree the actual outcome of a test is expected to
meet a certain threshold or a set of criteria for the test to be passed. Tests could be defined
on the basis of comparing simulated quantities to empirically measured values. This gives
rise to the term fidelity: the degree of correspondence between characteristics of the real
person, and the WBE that was created on the basis of their brain scans. General human
characteristics, as well as specifically individual traits, skills and memories, are expected
to be faithfully replicated by the emulation. To allow a broad basis for comparison, these
characteristics can be quantified by profiling individual scores across a battery of
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standardized tests. In high fidelity simulations, the profile would be expected to show an
overall high degree of correspondence between the simulated and empirical values.

3.1. Tests of the network dynamics

Functional testing of spiking neural networks can be performed on different spatial
and temporal physiological scales. The link between the dynamics at these different scale
levels might be fundamentally inaccessible to inquiry; hence, complementary approaches
are needed. There is no trivial way to compare the dynamics of high-dimensional systems.
Instead, a battery of tests is required, each of which contributes to an overall “score” for a
network. Some of the measures include: the overall level of firing activity of individual
neurons or particular groups of neurons in the network; the distribution of interspike
intervals; the self- and cross-correlation functions (pairwise and higher-order), which
quantify correlations between spike counts of binned spike trains (on different analysis
timescales); eigendecomposition of the network activity correlation matrix; methods for
detecting particular, repeating spatiotemporal spike patterns; measures for quantifying
synchronicity in spiking and phase locking; and tests for responses of the network to
spontaneous network activity (Gutzen et al. 2018) as well as external stimuli of various
kinds, measuring for instance the complexity in the resulting network response (Bayne et
al. 2024). Running an emulation with too large a timestep can result in artifactual
synchronization of neuronal spiking in the network, an undesired phenomenon which
gradually disappears as the timestep becomes smaller. The value of the timestep should
therefore be carefully considered (Hanuschkin et al. 2010).

3.2. Cognitive and behavioral testing

Further functional tests can be defined that specifically address design decisions
related to model construction (section 2.1). Validation, the process of determining whether
the chosen model is an adequate representation of the real-world system for its purpose
(Gutzen et al. 2018), should be addressed through a series of standardized behavioral tests
(Eliasmith and Trujillo 2024). Many types of standardized tests exist to assess cognitive
performance, that, among other things, involves the ability to reason, plan, solve
problems, think abstractly, comprehend complex ideas, and learn from experience. It is
not merely book learning, or test-taking, which can be considered a narrow academic skill.
Rather, it reflects a broader and deeper capability for comprehending our surroundings
and performing rapid and adaptive problem solving, and should be understood more
broadly to include skills in multiple domains (Deary et al. 2021).

In general, tests may score on the basis of observed behavior (like error rates on a
task), self-report, and reaction times. Many formal, standardized assessments have been
developed, covering a variety of different domains, such as for assessing a person’s
executive function and ability to concentrate on a task, sensori-motor function, visuo-
spatial processing, motor skill, memory and learning, language ability, social intelligence,
and creativity (Goldstein and Hersen 2000; Goldstein et al. 2003). We briefly discuss a few
tests from these categories for illustration.

Mazes test spatial navigation tasks and visual processing. Visual acuity tests were
used to compare the performance of a fully-detailed, and a simplified version of a large-
scale primary visual cortex model (Bileh et al. 2020). Other geometrical tasks include, for
example, skill at performing mental rotations of a three-dimensional object. Perception-
oriented tasks should be complemented by dexterity and motor proficiency tasks, for
instance, from simple manipulations like “peg board” tests, to playing a musical
instrument or typing on a computer keyboard at a certain level of proficiency.
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Working and long-term memory can be tested by means of Delayed Matching-to-
Sample (DMS) and N-back tests. In DMS, participants are required to match a sample
stimulus to a target stimulus after a delay period, for example in the Benton Visual
Retention Test, which involves visual memory of an abstract figure. The difficulty of the
task can be manipulated by varying the delay period or the number of distractor stimuli.
In the N-back task, participants monitor a sequence of stimuli (for example, letters or
numbers) and respond when the current stimulus matches the one presented N steps back
in the sequence. The difficulty can be manipulated by varying the value of N. Similar tests
exist in the auditory domain, such as for verbal and nonverbal auditory memory.

Natural language skills can be tested for by antonym and synonym vocabulary,
question answering, sentiment analysis, and textual entailment (Wang et al. 2019).
Language tests assess both the structure as well as content of language production,
including fluency, articulation, prosody, grammar, word finding, proportion of
informative words produced, in tasks such as open-ended question answering, story
comprehension and retelling, and picture description (Goldstein et al. 2003).

The Wisconsin Card Sorting Test measures flexibility in cognitive strategies in
response to changing patterns of feedback. Tower of London (ToL) is a test that assesses
planning and problem-solving skills. Behavior Rating Inventory of Executive Function is
a questionnaire that measures behavioral regulation, organization and metacognition.
Further tests address directing of attention and cognitive control, such as the Stroop test,
in which participants are presented with color words (say, “red”) printed in congruent or
incongruent ink colors (in this example, say, either red or green). Participants must then
identify the ink color while ignoring the word's meaning.

Further tests exist for aspects of social cognition, theory of mind and prosocial
behavior. Personalized tests can be used, for example, testing retrieval of specific, personal
memories. Aptitude tests can be administered for the specific field(s) that the individual
is an expert in. In the field of consciousness studies, several functional tests are defined,
including the detection of statistically second-order outliers and appropriate higher-level
understanding of movie segments (Bayne et al. 2024). Tests can even be administered of
susceptibility and responses to mystical experiences, which can be induced through
(simulated) pharmacology, but also through meditation and ritual. These include the
Mystical Experience Questionnaire (Barrett et al. 2015) and Cole's Spiritual
Transformation Scale (Cole et al. 2008).

Several types of test require a combination of skills to perform, for example, the Paced
Auditory Serial Addition Test (PASAT) asks subjects to add a series of numbers together
and keep the running total in memory, which requires complementary skills in auditory
processing, executive function, working memory, and mathematical skill. The Rey-
Osterrieth Complex Figure (ROCF) test asks subjects to replicate a complex figure
drawing from memory, which relies on skills in visual perception as well as motor control
(Goldstein et al. 2003).

Note that all test metrics are intended to inform a correspondence between the model
and the original, rather than being itself a score to improve. For instance, if the individual
was afflicted with dyslexia or dyscalculia, then their WBE will be expected to be similarly
affected (but see the discussion about cognitive enhancements in the Discussion section
below).

3.3. Achieving consensus on test batteries

In general, a picture emerges that a large and diverse array of test approaches exist.
Some of the tests in sections 3.1 and 3.2 have been discussed in the peer-reviewed
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literature for several decades, having been widely used and thoroughly validated. In spite
of this, it is not clear which of these tests are strictly necessary, which are overlapping in
what they test for, or which further tests may need to be added for a WBE. When tests are
formulated in terms of spikes, it can be hard to interpret what they test for, as spiking data
can not yet in general be “decoded” (the semantic meaning read out and interpreted).
Furthermore, many test outcomes are formulated in terms of one or more numerical
scores, and it is not clear which scores should be deemed adequate.

Tests should be checked for reliability in outcomes. Reliability in a test is the extent
that its results are consistent, irrespective of time of administration, proctor, test form, etc.
Although individuals taking tests may have (unconscious) incentives or inclinations for
faking good or bad, exaggerating, defensiveness, carelessness, or responding randomly,
tests can be designed to measure inconsistencies and exaggeration in the responses.
Several quantitative methods exist for evaluating the reliability of a test, for instance,
splitting the test in two even halves and comparing results on each half. Sensitivity
analyses or comparison with surrogate (counterfactual or alternate) models can help to
provide a reference point. These tests would be especially useful for checking design
decisions related to the simulation method (section 2.2), as surrogate models with
different parameters (bit resolution, timestep, etc.) can be easily run and compared.

Tests should additionally be checked for wvalidity, which is the extent that a test
measures what it purports to measure, including being complete and representative for
the testing domain addressed by the test, and that the test predicts or correlates well with
real-world outcomes. When using a battery of tests to assess characteristics in one and the
same domain, tests that purport to measure the same thing should have a high correlation
in outcome (and vice versa). This can be used to improve the testing procedures
themselves and help to establish a mutually consistent set of tests; even across network
levels (section 3.1) and behavioral levels (section 3.2).

As there are many detailed individual design decisions to be made, a
multidimensional, complementary system of tests is suggested. However, there is no
universal, canonical battery of tests, neither on the network dynamics level nor on the
behavioral level. The best practices of testing of neural network dynamics (section 3.1)
and testing on the individual, behavioral level (section 3.2), continue to develop and
evolve. New scientific and anthropological insights should continue to be integrated into
the testing battery. For instance, only relatively recently, recommendations were
formulated to use specialized techniques for assessing persons who are culturally distinct
from the populations on which psychological and neuropsychological tests have been
normed, and for whom these norms are likely to be misleading (Goldstein et al. 2003).

Determining an appropriate testing framework thus itself presents a complex set of
choices, where a gradual consensus emerges only through the scientific process, as well
as societal debates and the moral norms and standards at a given time, such that they
remain subject to continuous change and development as new insights emerge. Decisions
about the appropriate testing framework to use are furthermore influenced by personal
epistemological choices about, for example, what information sources to trust. Thus, even
a comprehensive battery of tests should be considered a necessary, but not sufficient
criterion for assessing the fidelity of a WBE.

Furthermore, major changes in testing outcomes would be expected to stem as a
natural consequence from the radical existential change that comes from being uploaded.
Personality, needs, desires and goals, could all reasonably be expected to undergo a shift
on the basis of moving from leaving a biological body behind to become uploaded. This
shift will confound the basis of comparison, especially when it comes to personality or
spirituality tests, and could be an argument for taking an initial test battery directly after
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the upload procedure and under appropriately defined conditions, as it would then focus
on the objective changes due to the new substrate, while minimizing the influence on the
subjective perception of the self and paradigm shifts that happen over time.

4. Discussion

Like a meteorological model of the atmosphere, a model of the human brain can
never include all the details of the thing that it describes, but it can contain enough detail
to be useful. Utility can be expressed as a set of design targets or phenomena that the
model is set out to describe, and a corresponding set of tests that demonstrate that the
targets have been met by the model (such as accurately predicting the weather). The set
of targets should include those at the level of network dynamics (corresponding to
section 3.1) as well as those at a behavioral level (corresponding to section 3.2).

Even after the design targets have been determined, a large number of choices
remain to be made about which biophysical mechanisms should be included in the
model (and with which parameters) in order to meet those targets. Given the synaptic
and neuronal microstructure that is evident in high-resolution scans of the brain, and
how well we can predict (and control) spiking at the single-cell level, the cellular level of
description seems like a prima facie plausible level of description for a WBE. However,
the brain is a highly complex dynamical system, with many processes that are relevant
for its computational role, and many processes that are not—and sometimes, even this
distinction can be hard to draw, like the finite blood oxygenation discussed in section
2.1. Increases in model complexity (typically involving an increased number of state
variables and parameters) might be associated with an improvement in numerical and
behavioral performance of the model, and improve the quantitative agreement between
an emulation and the real system it aims to model —in our terminology, the “fidelity” —
but at the same time, tradeoffs must be made, because improved fidelity is offset by the
cost, difficulty, time investment, risk, energy, and effort involved with data collection,
model fitting and operating the emulation substrate. These tradeoffs may be driven by
cost considerations, be based on pragmatism, personally held beliefs, or be heuristic in
nature, even when the purpose of the emulation is ostensibly the same.

To help individuals and organizations take informed decisions about model
fidelity, development of a comprehensive battery of tests is suggested (section 3.1 and
3.2). Developing this system of tests is a complex task, and although a certain scientific
consensus is expected to be achieved, a range of individual and organizational choices,
made on a vast array of model implementation details and configuration parameters,
will result in the emergence of a diverse spectrum of different approaches to WBE (as
argued in section 3.3), even under the assumption (made in section 1) that WBE will
generally be a widespread success.

Most fundamentally, there is no current agreement about what the moral status of
the upload is. There is no agreement about which specific cognitive capacity (or its level
of sophistication) is a necessary and sufficient condition to grant moral status.
Suggestions include consciousness, sentience (reasoning), the presence of a concept of
self and self-awareness, the capacity to engage in self-motivated activity, and the
capacity to understand oneself as a continuing object of experiences (Minerva 2021).
Formulation of an adequate set of tests for these capacities is clearly a task of grave
importance if the test results are going to be used to determine a being’s moral status.

Provided that moral status is granted to be equivalent to that of a non-uploaded
person, a unique set of ethical considerations arises. For example, in circumstances
where the person was suffering, they could ask their operator to end the simulation and
destroy the backups, causing them to cease to exist, akin to euthanasia. However,
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different substrate operators might have different views on what constitutes an
acceptable moral framework, and a set of regulations may be in place that governs these
decisions, allowing some and restricting other options available to the uploaded
individual (Minerva 2021). Clear liabilities should be established, for example in cases
where defects are found in the model to start with as a result of difficulties encountered
in the upload process, or that, due to long-term simulation in too low a fidelity, the
model could incur damage or be otherwise disadvantaged, which the substrate operator
could then be culpable for.

Relatedly, different substrate operators might provide different tiers of making
back-ups of the WBE model: in case a calamity strikes the data center hosting the
computational hardware that is running the WBE model, an earlier, backed-up version
of the model could be reinstated (Linssen and Lemmens 2016). Depending on the tier,
back-ups could be made at different intervals or with further-reaching safety guarantees.
The integrity of WBEs could also come under direct attack: imagine a blackmail
computer virus that infiltrates the platform hosting the WBE, and tortures the digital
entity (inflicting physical pain on the simulated body, or causing mental distress), unless
a ransom is paid. Just as we keep improving the security of our existing software, to
better protect them from hacking attacks, at the same time hackers keep improving their
skills and techniques to break into these systems. Possibly, a state of full (cyber)security
can never be achieved, but is in a dynamic equilibrium with attackers, a phenomenon
which is known from evolutionary biology as the “Red Queen hypothesis”. Back-up
arrangements and defense from computer viruses could constitute novel types of
emulation tiers offered by substrate operators, closely analogous to tiers pertaining to
fidelity.

The complex issues that arise related to privacy of WBEs are already being
discussed at present, in debates about neurotechnologies that offer the possibility of
directly decoding thoughts from neural activity (Baselga-Garriga et al. 2022). For a WBE,
the neural activity of the whole brain would be easily accessible and used in advanced
decoding tools. It would thus be comparatively easy for an external entity to access the
content of memories, experiences and mental states of the uploaded brain (Minerva
2021). Furthermore, if the individual was instantiated in a (robotic) avatar through a
wireless link, the body as well as the link create additional privacy concerns (Minerva
2021) as well as a new set of fidelity-versus-cost tradeoffs pertaining to the avatar and
the wireless link.

On a free market, multiple operators and providers of WBE substrate infrastructure
(hardware and software) could exist, offering different tiers or packages, that offer WBEs
with a diverse set of options at different prices. In addition to qualitative differences in
model architecture, such as which biophysical mechanisms are included or not, one of
the most readily apparent WBE parameters to compete on is acceleration of the
emulation with respect to real time. Provided that enough computing power is available,
the emulation could almost trivially be run any number of times as fast or as slow as
“real” (wall-clock) time (Hanson 2016). Migrating a WBE model from one operator to
another would in general be possible, depending on whether the WBE model
architecture is comparable between the two operators. If model architecture is tightly
coupled to the specific (neuromorphic) emulation hardware used, then difficulties could
arise and give rise to “operator lock-in”. Additionally, in a free market, monopolies of
WBE operators could ensue, which would be undesirable because it reduces consumer
choice and technological innovation, and results in higher prices (Fagella 2020).

In this scenario, WBE could also become a driver of socio-economic inequality, as
those who cannot afford a high-tier emulation fidelity are forced to live in a state of
mental or physical impairment compared to those who can. Lower-tier emulations could
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predispose their subjects to mental disorders, or create new classes of mental disorder
not found in nature, brought about by a particular set of design decisions in the model
(Krzanowski and Krzanowski 2023). In contrast, high-tier emulations provide a
competitive advantage, for example in business or trading (even if only by being able to
respond faster due to being able to afford a more highly accelerated emulation), which
would lead to an ever-growing disparity between high and low socio-economic status.

An appropriate, overarching legal and ethical framework needs to be established,
extending the current set of “NeuroRights” (Baselga-Garriga et al. 2022), to address the
concerns raised above. For instance, regulations could be put into place that grant the
ownership of the hardware on which the brain is run to the emulated person, in the
same way as we have ownership of our bodies. Regulations regarding minimum
acceptable fidelity (as well as extra provisions such as virus protection and back-up
policies) could constitute “human rights”-type laws for WBEs.

WBE creates a lot of freedom in general for further modifications to the model,
some of which might demonstrably boost intelligence, akin to present-day nootropics or
drugs. In addition to time acceleration, interventions might involve dynamically
switching between different sets of configuration parameters of the model while it is
running, as it is easy in a simulation to, for instance, replace all of the neurons of a
particular cell type with another variant, picked from a library, that has less or more
fidelity to the original, even on a brain region-by-brain region basis and on the basis of a
changing set of demands over time. Offering a dynamic control over these parameters
constitutes yet another dimension of cost-versus-fidelity tradeoff tiers. Which of these
will be offered by a given platform operator is again an open question: some might
consider certain options and possibilities unethical (like “wireheading”, the act of
directly stimulating the brain’s reward center), whereas others could consider
interventions like this ethical or even desirable, as a right to mental self-determination,
and the expression of humankind’s fundamental drive to decrease suffering and
improve themselves and the world around them (Bublitz 2013; Pearce 2023).
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